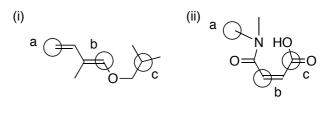
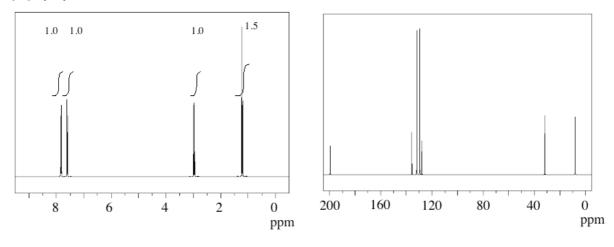
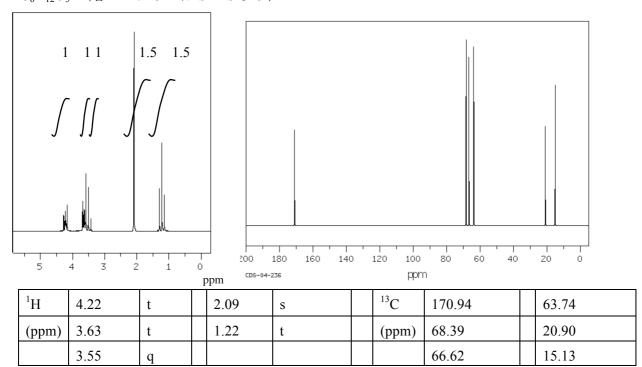

- 1 以下の文はそれぞれ正しいか誤りがあるか。解答欄に正しい場合には○、誤っている場合には×を記入せよ。
 - a) 電子密度が高い原子は一般に低磁場に観測される。
 - b) ¹³C-NMR の DEPT135 スペクトルを用いると全ての級数の炭素を識別できる。
 - c) アルコールをはじめとする活性水素は、¹H-NMR スペクトルにおいて常にカップリングに関与しない。
 - d) trans-2-ブテンと cis-2-ブテンは各原子の電子的な環境が同じであるため、 1 H-NMR スペクトルは同じである。
- 2 400MHz の NMR 装置にて、結合定数が J=6.00 と 12.8Hz の dd(doublet of doublet)の シグナルが 5.48ppm に観測された。このとき各ピークはそれぞれ何 ppm に観測される か、全てについて答えよ。
- 3 以下の化合物について、○で囲んだプロトンの分裂パターン (s、dd など) と観測される化学シフト(ppm)を予想せよ。化学シフトは大まかな範囲で構わない。



4 以下の化合物について、磁気的に等価な水素ごとの積分比はどのようになるか示せ。

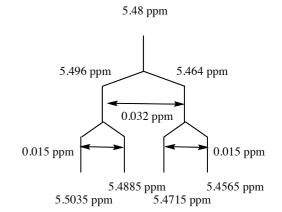

5 以下の化合物の通常の ¹³C-NMR スペクトルでの観測される領域、および DEPT135 スペクトル と DEPT90 スペクトルでのピークの現れ方(正負、観測されないなど)を予測せよ。


6 以下の組成式・ 1 H-NMR スペクトル・ 13 C-NMR スペクトルをもつ化合物を答えよ。 1 H-NMR スペクトル中の曲線は積分曲線であり、その上の数字は積分比である。また、スペクトルの下には、各ピークに関する情報(1 H:化学シフトと分裂パターン、 13 C:化学シフト)が示してある。

C₉H₉O₁Br₁ (スペクトルは ChemDraw により予測)

¹ H	7.83 ppm	d	¹³ C	199.46 ppm	127.90 ppm
	7.60 ppm	d		135.64 ppm	31.72 ppm
	2.97 ppm	q		131.81 ppm	8.10 ppm
	1.22 ppm	t		129.49 ppm	

C₆H₁₂O₃ (各スペクトルは SDBS より)


12/9 は中間試験です。注意は先週のプリント参照。

これまでのプリント等は研究室ホームページにあります。カップリングに関する補足資料、並びに過去の中間試験およびその解説と解答(今回のものと重複あり&問題訂正をかけた分は修正済み)も掲載(内容を毎年多少変えているので、過去問には今年度の内容と整合性が無い部分もあります)。

1

a)
$$\times$$
 b) \times c) \times d) \times

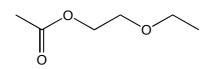
2 まず、中心が 5.48ppm である。 6.00 (Hz) / 400 (MHz) = 0.015 (ppm) 12.8 (Hz) / 400 (MHz) = 0.032 (ppm) 従って右の樹形図の通りとなる。

3

	(a)		(t))	(c)		
	化学シフト(ppm)	分裂パターン	化学シフト(ppm)	分裂パターン	化学シフト(ppm)	分裂パターン	
a	4.5-6.5	q	0.7-1.3	t	2.4-2.7	sep	
b	3.3-4.5	S	3.3-4.5	q	6.5-8.0	d	

比なので(a)は1:1でもOK

5


(i)	¹³ C	DEPT	DEPT
	(ppm)	135	90
a	110-150	\downarrow	_
b	110-150	↑	\uparrow
c	30-60	1	1

(ii)	¹³ C	DEPT	DEPT
	(ppm)	135	90
a	45-75	\uparrow	-
b	110-150	1	1
c	160-220	_	-

$$H$$
 H
 O
 H_2C-CH_3

考え方の例

- ・ 不飽和度が 5 で、芳香環の領域にシグナルが見えるので、ベンゼン環+一つの不飽和結合 を示唆
- ・ ¹H の積分比を整数に直すと、低磁場から 2:2:2:3。和は 9 で、組成式のプロトン数に 一致するから、この積分比は直接各ピークに対応するプロトン数を示している。
- ・ 13 C の 199.46 ppm のピークからカルボニル基(C=O)が存在(さらに恐らくケトンかアルデヒド)。残った組成は $C_8H_9Br_1$
- ・ 1 H の二つの d のピークと 13 C の 4 つの芳香環に帰属できるピークから、 p -二置換ベンゼン $(-C_{6}H_{4}-)$ 。残った組成は $C_{2}H_{5}Br_{1}$ (以上で不飽和結合が終了)。
- ・ 1 H の 1.22(3H, t)と 2.97(2H, q)は、積分比とカップリングから $CH_{3}CH_{2}$ -に帰属できる。また、 ^{13}C を含めたケミカルシフトから、エチル基はカルボニルか芳香環に隣接。残った組成は Br-
- ・ つまり、 CH_3CH_2 -、 $-C_6H_4$ -、>C=O、-Br が構成要素。これらをつなぐ方法wは、正解の化合物と、 CH_3CH_2 - C_6H_4 -C(=O)Br。このどちらかが答えられれば正解(これらの判別は講義の範囲からはできない)。

- ・ 不飽和度1。¹Hの積分比の整数比は組成式のプロトン数と同じ。
- ・ 1 H から、 CH_{3} 、 CH_{3} CH₂-(t と q で積分比は 3:2)、 $-CH_{2}$ CH₂-(t と t で積分比は 2:2)があるのが分かる。
- ¹³C から C=O があるのが分かる (他に不飽和無し)。
- ・ 残ったのは、-O-が2つ。ケミカルシフトから、メチルケトン型の CH_3 -があること、エーテル型の $-CH_2$ -が3つあることなどが判断できるので、上記の化合物。